Converging Semidefinite Bounds for Global Unconstrained Polynomial Optimization

نویسندگان

  • Dorina Jibetean
  • Monique Laurent
چکیده

We consider here the problem of minimizing a polynomial function on Rn. The problem is known to be hard even for degree 4. Therefore approximation algorithms are of interest. Lasserre [11] and Parrilo [16] have proposed approximating the minimum of the original problem using a hierarchy of lower bounds obtained via semidefinite programming relaxations. We propose here a method for computing a converging sequence of upper bounds using semidefinite programming based on perturbing the original polynomial. The method is applied to several examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semidefinite Approximations for Global Unconstrained Polynomial Optimization

We consider the problem of minimizing a polynomial function on R, known to be hard even for degree 4 polynomials. Therefore approximation algorithms are of interest. Lasserre [15] and Parrilo [23] have proposed approximating the minimum of the original problem using a hierarchy of lower bounds obtained via semidefinite programming relaxations. We propose here a method for computing tight upper ...

متن کامل

Global optimization of rational functions: a semidefinite programming approach

We consider the problem of global minimization of rational functions on IR (unconstrained case), and on an open, connected, semi-algebraic subset of IR, or the (partial) closure of such a set (constrained case). We show that in the univariate case (n = 1), these problems have exact reformulations as semidefinite programming (SDP) problems, by using reformulations introduced in the PhD thesis of...

متن کامل

On the construction of converging hierarchies for polynomial optimization based on certificates of global positivity

Abstract. In recent years, techniques based on convex optimization and real algebra that produce converging hierarchies of lower bounds for polynomial optimization problems (POPs) have gained much popularity. At their heart, these hierarchies rely crucially on Positivstellensätze from the late 20th century (e.g., due to Stengle, Putinar, or Schmüdgen) that certify positivity of a polynomial on ...

متن کامل

A semidefinite relaxation scheme for quadratically constrained

  Semidefinite optimization relaxations are among the widely used approaches to find global optimal or approximate solutions for many nonconvex problems. Here, we consider a specific quadratically constrained quadratic problem with an additional linear constraint. We prove that under certain conditions the semidefinite relaxation approach enables us to find a global optimal solution of the unde...

متن کامل

Bounds on entanglement dimensions and quantum graph parameters via noncommutative polynomial optimization

In this paper we study bipartite quantum correlations using techniques from tracial polynomial optimization. We construct a hierarchy of semidefinite programming lower bounds on the minimal entanglement dimension of a bipartite correlation. This hierarchy converges to a new parameter: the minimal average entanglement dimension, which measures the amount of entanglement needed to reproduce a qua...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004